

The Slacker’s Guide to Project Tracking
or spending time on more important things…

James Davison, Tim Mackinnon, Michael Royle
ThoughtWorks UK

Berkshire House, 168-173 High Holborn
London WC1V 7AA

{jdavison, tmackinn, mlroyle} @thoughtworks.com

Abstract
As a Project Manager, your time is far too important to be
wasted on mundane tasks like detailed tracking of the day-
to-day activities of each of your developers. Wouldn't it be
nice if you spent your time negotiating project scope and
identifying and removing team impediments? Our
experience has shown that consistency in card sizes and
estimates allows you to perform full project planning with
little effort. Additionally, it results in diagrams that
accurately reflect your project's status. With this, release
planning sessions take hours not days, freeing up valuable
time for both you and your developers.

1. Introduction
While it’s easy to convince Project Managers that some

form of project tracking is important, what is difficult is to
get the right degree of tracking that adequately helps them
make informed decisions. This paper is based on our work
with a large organisation that had a very formal process for
project selection, definition and execution. However, one of
their software delivery departments was open to
suggestions about how to make their process more agile
and better able to deliver working solutions on time and on
budget. By working with several of their development
teams, all of whom had little agile experience, we began to
discover basic techniques for making project tracking both
simple and extremely effective. In turn, these teams have
developed a great track record for delivery that our tracking
techniques have both facilitated and made more visible
within the organisation.

We found it made sense to break down the tracking
process into three areas: iteration planning, progress
tracking, and release planning. Each of these areas presents
specific information that helps organize and understand
project status by tracking at different levels of granularity.
For instance, release planning deals with the entire release
at a high level by considering a unit of measure of weeks.
Thus after a release planning session we can’t say that we
will be finished at precisely 12 p.m. on July 15, but we can
say that the current scope seems to be a reasonable fit for 3

months of work. This is then supplemented by other
tracking techniques which look at a finer level of detail and
help confirm or contradict the initial release plan. It is
important to remember that this is not a science because
this process is based on estimates. Estimates are inherently
inaccurate but with continued tracking and attention these
risks can be mitigated, as we will show in this article.

2. Why Track Progress?
When we began looking at what tracking would be

necessary for a team, we started with first principles and
examined who the audiences were for the results of our
tracking data. This enabled us to tailor the tracking process
to meet these needs without doing unnecessary work.

In a large organisation, such as the one we were working
with, one of the main stakeholders for any project is
business management. For this group, development of
software is an investment, and they contribute time and
money to make projects happen. This also means that their
reputations are on the line for delivering the value from the
software, and like any investor, they want to know how that
investment is proceeding. Most of the time these
stakeholders will not have in-depth knowledge of how the
software development process works, so they want
information presented to them in such a way that they can
easily digest it and can decide if there are any actions they
need to take to help ensure the delivery of the solution.

Along with business management, the users are another
important group that have significant interest in the
progress of the project. In larger organisations, a nominated
person or smaller group of people represents the entire user
group on the team. This person (or smaller group) is not
always technical and so they need an easy way of
understanding progress in such a way that they can simply
and accurately communicate it back to their peers.

Alongside management and the users, the Project
Manager is accountable for the delivery of the project.
Having accurate information that can be used to quickly
and easily discuss progress with all of these groups is
extremely important. Furthermore the Project Manager

needs to be able to interpret this information so that any
corrective adjustments can be made to ensure the success of
the project. For example, if progress is slow, it might be
possible to hire more developers or remove barriers that are
impeding progress. If there are indications of creeping
scope, there needs to be a discussion with the stakeholders
as early as possible to show how this will impact delivery.

Finally the development team itself needs to have an
understanding of how well they are doing both for pacing
and morale purposes. This can be vital to the success of a
project. If the project is behind schedule then the team can
adjust its approach or make any necessary changes that will
help mitigate the risk of the project not delivering.

3. Iteration Planning
One of the first teams we encountered in the

organisation was a collocated team of about 13 people.
They had been waiting for final project approval to proceed
with the execute phase of the project. They had been
spending time spiking [2] different user interface libraries
and persistence mechanisms in Microsoft .Net [1].

The time spent, while useful, was rather unstructured
and wasn’t being measured in a way that could be used for
predicative purposes. Borrowing from the practices of
eXtreme Programming (XP) [2], we immediately held a
“Planning Game” and planned for “Short Iterations” of 1
week. We also began implementing and tightening up the
other XP practices, however that work is outside the scope
of this paper.

3.1 First Steps
As there was already a proposed project plan in place

due to the organisation’s gated acceptance process, we
chose to concentrate on getting repeatable development
iterations working. We also concentrated on measuring a
development velocity [3], which would give an indication
of how much work the team could achieve in a new
development technology (.Net).

We held a planning game based on a velocity from a
different team and selected some initial stories that dealt
with persistence and reference data administration.

3rd Party Setups (#5.1) 1.00 100%

Sort on product (#53.16) 1.00 0%

Group by Country (#93.1) 0.25 100%

Transfer Simple Product (#62.5) 0.25 100%

Transfer Complex Product (#66.2) 2.00 100%

Totalling (#53.20) 0.25 100%

Country Product Setup (#16.2) 0.25 100%

Velocity Total 4.00

Figure 1 – Iteration 3 results

Our planning process was similar to that described in
[2], whereby cards were estimated in ideal days, and we
tracked the total of how many cards were completed in an
iteration. We also adopted the velocity simplification
described in [3] and used a fixed iteration length that
avoided using slightly more complicated “load factor”
arithmetic. As an example, by the end of the third iteration,
the measured results looked like Figure 1. The developers
had finished 6 story cards, giving a velocity total of 4.

In Figure 1, notice how the team didn’t finish card
#53.16 which is why the completed total adds up to 4 and
not 5. Therefore in the next iteration, using the concept of
“yesterday’s weather” [2], the team signed up for another 4
units of work. The potential stories for the next iteration
were laid out on a table and the team collectively discussed
new estimates based on their previous experience. Note, we
differed slightly from the technique presented in [2], and
used team estimates. These were much simpler than having
individual developers track personal velocities and also
helped with motivation by avoiding any blame culture
related to not finishing cards. By using this set-up, planning
games were quite simple although they did require someone
in the role of Iteration Manager (IM), which will be
discussed later in more detail, to facilitate team discussions
to keep them focused. We found that in these meetings, the
best strategy for the IM was to periodically ask the team
“Do you have enough information to put an estimate on
that?” This reinforces the message that not all decisions
have to be made collectively with the team, just that enough
common strategy needs to be agreed and recorded on task
cards for a later pair to pick up and work with.

Once the estimates were in place, the users were then
able to select from the estimated stories up to a total of 4 as
shown in Figure 2. Notice card #53.16 was given highest
priority since it had “hungover” from the previous iteration.

Sort on product (#53.16) 1.00

Product Setup (#62.2) 0.25

Transfer New Product (#66.3) 0.50

Database Qualifiers 0.50

Transfer Multiples (#62.3.5) 0.50

Stock Counts (#62.4) 0.50

Warehouse Isle Setup (#62.1) 0.50

Display Type of Trade (#89.1) 0.25

Total 4.00

Figure 2 - Iteration 4

3.2 Steady Iterations
As we continued planning 1-week iterations with the

team, we found that they were very effective at giving
quick feedback on story progress. More importantly, were
much faster to plan due to their small size. This is an
important point as many developers dislike planning

meetings, and so the smaller duration makes them much
more acceptable. We found that the users, who were also
initially sceptical, also began to like them because any
cards that were deferred due to velocity constraints were
available for reconsideration in a short space of time.

Once an iteration had been created, the development
team were encouraged by the Iteration Manager to take any
cards larger than half a day and split them into meaningful
development tasks to ensure that measurable progress could
be made. We also noticed that stories that were larger than
2 days tended to run into difficulty and so we typically
suggested that these stories be split into smaller but still
useful chunks that could be more easily completed and
tracked. While we didn’t strictly enforce this, we found that
the users noticed this trend as well, and so they started
getting better at writing smaller stories of their own accord.

As the development iterations occurred every week, we
also found that physically moving the cards to a meeting
room was laborious. To overcome this, we used some
simple story card wallets1 which we created by duct taping
CD protective wallets together and hanging them on a
white board using bull clips (Figure 3). To ensure that we
had smooth running planning games we also stuck helpful
tips on the back of the wallets to indicate placeholders for
Story Card format (title, text, author etc.), Acceptance tests
(Action, Result), Pair History and Tasks 1 to 5.

Figure 3 - Iteration Planning Wallets

In addition to the logistical advantages, it also enabled
visibility of the process. Often when cards are just placed
on a board by themselves, it is difficult to work out the
relationships between them. The card wallets allowed us to
group relevant cards and communicate their relationship in
an easy and effective manor. We have even noticed that
another team using the wallets has decided to put an “End”

1 The original wallet idea came from Connextra

marker after that last task so that they can see if there are
any missing cards.

As we continued to complete iterations we found that
our users felt a bit divorced from the development process.
They often noticed that cards were being considered
complete when in fact they had known problems. In an
attempt to increase the visibility of the card status, we
instituted a coloured sticker scheme2 to indicate the status
of cards as shown in Figure 4.

Originally we only had 3 states for the cards: Not Started
(Red), Developer Complete (Yellow), and User Accepted
(Green). We gave the green stickers to the users and the red
and yellow stickers to the Iteration Manager. However we
found that sometimes, even though a card was a place
holder for a conversation, that conversation was not always
happening. To overcome this, we added an extra state,
Story Discussed with User (Blue) that must always happen
before a story is Developer Complete.

A nice side effect of the colored stickers was that they
had the effect of showing iteration status in a quick glance.
As more stories were accepted, the iteration board would
slowly turn green. In our experience, without this it was
often difficult to determine the state of each card played in
an iteration. Usually, this was because this information
resided entirely within the Project Manager’s head, or
worse, spread out amongst the team members.

Figure 4 - Story Card Transitions

3.3 Later Refinements
Once the team was used to working on weekly iterations

we noticed that we didn’t always have as many pairs
working as we thought. This was typically because some
project members were required to help other teams or were
on a short holiday. To easily account for this without
getting too detailed, we decided to simply count the number
of pairs available at the stand-up meeting and use the
weekly average for the following iteration. This simple
solution worked very well and also emphasised everyone’s
commitment to the project. At the beginning of each

2 An idea we also saw used at Connextra

planning meeting we reviewed our previous velocity and
then discussed the number of pairs available to determine
our velocity for the next iteration as shown in Figure
5.Although the table shows 2 decimal points, the Iteration
Manager would normally round to the nearest quarter day.

Velocity To Use

Pairs
Pessimistic

Velocity
Optimistic

Velocity

1 1.06 1.29

2 2.13 2.58

3 3.19 3.86

4 4.25 5.15

5 5.31 6.44

Figure 5 - Velocity Matrix

Another issue that we encountered when measuring a
pure velocity was referred to as the “Friday Afternoon”
syndrome. On the last day of the iteration, if there was only
1 large card left to work on that was obviously not possible
to complete it in the time available, one developer came to
the conclusion that he might as well do nothing and “go to
the pub”. This was especially the case if the work was not
going to count in some way towards the velocity
(admittedly this developer had a tendency to look for
excuses to “go to the pub”).

As the team felt strongly about this, we decided that
partially completed work should be visible when measuring
velocity. Rather than losing the benefits of “yesterday’s
weather”, we introduced a second “optimistic” velocity that
also counted a percentage of ideal time that had been
measured on incomplete stories. In reality these percentages
were very coarse grained and were normally one of 25%,
50%, 90% and 99%. At the end of each iteration the IM
queried developers for the percentage on any incomplete
stories, and this was added to the normal “pessimistic”
velocity to form a range on the velocity matrix as shown in
Figure 5. This was not meant to be used as an excuse to not
finish whole cards, but it did mean that in a planning game
the team could guarantee to finish the pessimistic velocity
but could stretch to finish the optimistic target. This range
of velocities enabled the IM to use their judgement on how
much work should be attempted. Sometimes there was
evidence that the optimistic target was uncharacteristic and
so the team reverted to just using the pessimistic velocity.
At other times the team was unlucky and they wanted to
stretch to try and achieve a more optimistic figure. This
helps address the complaint that strict adherence to
“yesterday’s weather” removed any judgement from the
planning process. The IM (as well the team and customers)
all have the necessary information needed to make an

informed decision, and set the correct expectations in an
easy to maintain manner.

This technique does come with a health warning. Teams
that consistently have a wide divergence between
pessimistic and optimistic velocities are exhibiting a project
smell of not properly completing cards. However, if used
sensitively, a range helps gain team support for using an
appropriately measured velocity. We also found that our
users were very supportive of this technique as they could
see that attempts were being made to actively make
improvements.

4. Progress Tracking
While significant progress was being made on each

iteration, and we had a functionally running application to
demonstrate, our steering group continuously asked about
project progress. As we were using XP as a development
methodology, we were able to easily tell them the number
of stories finished, the number of stories remaining, the
number of bugs fixed as well as other typical metrics like
man days used. In practice, they could never really grasp
how this related to the success of the project. These
numbers were alien to them and so the Project Manager
decided that we needed something that would capture their
interest as well as convey an accurate picture of the project.

4.1 The PM’s Time Constraints
While it’s easy to promise timely information on project

status, the reality was that consolidating and massaging this
data into a presentable form could easily use up half a day.
Our Project Manager was keen to take an agile and
pragmatic approach to this, partly because he had a lot of
other work to do.

In fact it’s very easy to lose sight of the full extent of the
Project Manager’s job and become too focused on simply
collecting project metrics. In the case of this particular
team, spending time with both customers and project
sponsors was an important aspect of the job. As with any
relationship, open communication needs to be nurtured,
especially as previous projects for this particular user group
had failed. To make things even more challenging, the
customer base was geographically diverse and so couldn’t
be meet all at once.

As well as meetings, fiscal reporting was also another
important activity that took a significant amount of time.
This tracking is detailed and must be accurate as it can
affect departmental performance; therefore, it required
adequate time to get right.

We also noticed that “other” activities were not unique
to this particular team. When we examined the results from
retrospectives [4] held by four other similar teams at the
end of their release deliveries (roughly every 2 months), the
Project Manager’s were all faced with other common items
that “didn’t go so well” and needed to be addressed:

• Team communication

• Getting customer feedback

• Lack of appropriate documentation

• Difficulty of achieving adequate testing

We were concerned that we didn’t want a new way of
reporting to divert the Project Manager from these other
more important responsibilities.

4.2 First Steps
The original template for project reports (Figure 6)

detailed project performance by reporting Costs, Man Days
and Milestone Targets with columns for planned, actual,
forecast and variance. While complete, this data seemed
complicated and not in keeping with the agile approach
being used for development.

Man Days

Resource
Type

Planned
days

Actua
l days

Forecast
to End

%
Variance

Project
Manager 88 21 67 0%

Technical
Architect 88 22 66 0%

Business
Analysts 141 19 105 (12.1%)

Lead
Developer 88 22 66 0%

TOTAL 405 84 304 (4.2%)
Figure 6 - Original reporting format

In designing a new report, the first obvious question to
answer was “what data would be easy to obtain but still
show progress”. As data from several XP iterations was
available, the Project Manager tried to show something
graphical that gave a sense of progress (Figure 7.). These
graphs were intended to show what percentage of stories
had been completed and how much time remained. Graphs
are particularly useful because they can convey a lot of
information that would be difficult to follow in textual
form, however we found this first attempt was still difficult
to interpret.

What we really wanted the stakeholders to understand
was the trend towards an on-time completion. Therefore
after some brainstorming, we decided to try a stacked bar
graph approach as shown in Figure 8.

The lower segment of each bar indicates the number of
stories completed, while the top portion represents the total
number of story cards remaining (split into those defined,
and those estimated to be defined).

 Figure 7 - First reporting attempt

As you can see this is a powerful yet simple technique
for presenting this information. The format is similar in
concept to a “Profit Graph”, where increasing profits and
decreasing expenses are viewed as a good indication of
success. In our case, the reader’s eye will fill in the trend
line of completed stories, which is what the Project
Manager wanted readers to notice. Additionally, it also
shows other information about possible scope creep and
other issues that may impact the delivery. Our graphs are
opposite to the “Burn Down Charts” [5] used in Scrum,
which show a decrease in remaining hours. We felt that
showing an increase in completed work was
psychologically more pleasing.

 Figure 8 - The first report

In Figure 8, the first iteration bar in this graph shows
only “stories completed” and “estimated stories to be
written”. This reflected that the users had not yet been able
to translate their high level requirements into concrete user
stories. Based on progress in the first iteration, the Project
Manager took the high level functional areas of the system
and estimated that these would translate into approximately
90 user stories which he indicated on the graph. With this
graph in place it was clearer how much work there was for
the users to finish writing the story cards. In fact, as the

users were now seeing progress they became better at
writing more stories.

As the project progressed, the next monthly report
(Figure 9) continued to show development progress as well
as the completion of all of the story cards (show in
iteration 7, the last bar on the graph). This indication of
story completion removed a large amount of risk from the
project.

Figure 9 - The second report

At the end of the first project release (Figure 10), you
can see that development progressed at a relatively constant
pace (shown on the graph as the bottom segment of each
bar). However, we can also see that the Project Manager
had to manage scope creep very carefully. These scope
changes were partially due to:

• The lack of completely defined stories at the
beginning of the project

• The inexperience of users, new to writing story
cards

• Some stories that were intended for the next
release being “accidentally” moved earlier

Figure 10 - The final report for release one

For the next release (Figure 11), the situation was quite
different as all of the stories were defined up front. In fact
in this release it was even possible to add more features
than were initially specified. Again it’s interesting to notice
that the development progress of stories completed
increased at a steady rate just as in the previous release.

Figure 11 - Progress in the second release

4.3 More Detailed Tracking
As good as this tracking was, the Iteration Manager was

worried about the inaccuracy of this method of reporting
progress. The problem was that not every story was of
equal size, and he feared that by treating them as if they
were, the reported progress would be skewed. Instead, his
idea was to plot the number of completed ideal days as a
function of the iteration. Figure 12 shows an example of
this graph. Again this shows a similar overall trend of
increasing development as well as how many ideal days of
work were left (the line).

Figure 12 - A more detailed measure of story progress

Unfortunately, as we progressed through several
iterations, this graph became more problematic. The
difficulty was in dealing with story cards that spanned
multiple iterations. For example, if card #x was initially
started in iteration 3 with an estimate of 1 ideal day, it
required additional effort to track the history of the card if it
wasn’t completed. If the card was finished in the next
iteration, we had to take the original estimate and add any
additional estimated time and put this on the graph. While
not terribly difficult, the additional tracking overhead began
to add extra time to creating the graph. We also noticed that
this method of tracking didn’t easily lend itself to showing
scope creep.

About halfway through the release, we decided to
compare results from the two graphing techniques to see if
either of them was better able to predict an end date for the
project. We were initially surprised to find that both
methods predicted the same end date. At the same time we
were quite relieved as the story count method of tracking

was much easier to maintain and so we decided to abandon
the second tracking technique.

After considering the results of our experiment, the
explanation we came up with was two-fold. The first
centred on our philosophy for estimation consistency over
accuracy. Estimates by definition are fuzzy and not
particularly accurate. Therefore, how do we use them to
accurately predict how long it will take to develop an
application? There are two schools of thought on this. The
first and most often used is to keep track of the actual time
taken to finish something and then use this actual as the
basis for the next set of estimates. For instance, let’s say
we wrote a personal contact screen and the estimate was
one day but it actually took two days. When the card for a
screen for business contacts is being estimated it would be
given an estimate of 2 days as it is similar in size to the
personal contacts screen. The biggest advantage of this
method is that it incorporates past experience when
producing new estimates. This means that over time the
difference between the estimated and actual time will tend
towards zero. However, it also means that you need to
accurately keep track of the actual time taken for each card
and present that information in such a way that the team
can quickly recall the amount of time taken for any one
card.

Because of the extra effort involved in the first
approach, we chose to use the second method, which is to
keep estimates consistent. To use the example from above,
rather than giving the business contacts screen a two day
estimate we would give it a one day estimate. The reason
this works is because if the estimates are consistent then we
should have a nearly constant load factor [2] which can
then be used for any estimates to determine relatively
accurately how long they will take. This simplifies the
tracking process because we don’t need to record the actual
time taken for each card. Additionally, we found that we
didn’t even need to record the original estimate because we
used a simple guideline for estimation. For any estimate,
we asked that it should be based on the amount of time the
developers thought it would take to “Hack” the solution.
Therefore, we didn’t include testing, refactoring [6], or
non-development time in estimates and simply tracked all
of these within our development velocity. Thus the time
taken to “spike” a possible solution can be used as an ideal
estimate, as re-implementing a production worthy version
incorporates refactoring and proper unit testing in the
measured velocity.

The second factor in the success of the simple tracking
model was our tendency to keep cards to a manageable
size. Our goal for every card was to keep it between 0.25
and 2 ideal days. As we estimated cards, if we found cards
larger than 2 ideal days we generally broke them down into
meaningful pieces that could be easily completed. As
previously mentioned, while this wasn’t strongly enforced
we found that users began to notice that smaller cards were

much easier for them to test and accept as finished. Thus
they also began to write cards of this size.

The combination of these two simple factors: estimation
consistency and small card size, created an environment
where simply counting cards was enough to track progress.

4.4 Exciting Observations
After the introduction of the new graphs, we began to

notice that at steering group meetings, the attendees would
immediately turn to the page with the graph on it to see
what progress had been made. Although they were used to
a common format for project reports, it was clear that the
new graph was conveying to them more than what they had
seen in previous reports. Furthermore, because a lot of
information was captured in one picture it became a good
catalyst for some of the best project discussions.

The last refinement we made to the graph was adding a
predictive aspect to it. This was just a simple average
weighted by the anticipated number of pairs available.
Figure 13 shows a graph with these projections added. You
can see that from the seventh iteration onwards, the bars are
a different colour. This is the predictive section of the
graph. It shows the predicted number of cards completed
based on a weighted average and the anticipated total
number of cards. In this example, the predicted total
number of cards remains constant. We tried to be more
accurate by predicting how many cards would be added and
split-up. However, at that point we decided that the extra
information would only confuse the matter and make the
results more ambiguous.

Figure 13 - Progress tracking with predictions

One downside of the predictions is that it adds a level of
precision that in reality isn’t there. For instance, at one
steering group meeting about halfway though a release we
had to fend off questions about why it was predicting that
there would be two cards remaining that couldn’t be
finished. As with most things, people will believe numbers
even if they know they are just a guess or estimate.
Therefore, you should try to judge your audience and their
propensity for believing numbers before showing them a
simplistic predictive model.

In retrospect, there is a lot to be said for not even using a
predicative model and simply showing current progress.

With a single end bar that shows the expected number of
completed stories, you would then rely on the reader to
imagine the trend curve themselves. When you have only
completed 2 or 3 iterations, the line they imagine will be (in
their minds) fairly inaccurate as they understand that they
don’t have enough data points. As you get more iterations,
the visualisation of a trend line becomes much easier and it
becomes much more obvious if you are on track or not. We
haven’t tried reverting to this model but it would definitely
be in line with our tendency to question the appearance of
too much accuracy and look for simplifications wherever
possible.

Figure 14 - Another progress tracking example

Finally, after seeing the success of our progress tracking,
other teams within our department have begun using similar
methods. Figure 14 is a diagram used by another team
where the bars represent the same information but they
have added a trend line to aid visualisation.

An interesting point about this graph is that it is obvious
when the scope changed. In iteration 5, the users asked the
team to deliver more functionality. This information could
be presented to a steering group to show why the team may
not make the deadline. In this case, they were able to get
additional time and budget to cover the new scope.

5. Release Planning
The organization we were working for had insisted that

no project would be approved unless it had a “defined”
project plan. Thus for our project, there was already a high
level plan that had been created by the Project Manager and
the Technical Architect. While this plan was mainly
methodology neutral, it was a more traditional plan with
pieces of work shown in a Gant chart. As development was
progressing in an agile, needs driven basis, we saw that the
reality of the emerging iterative solution was diverging
from the original plan. Therefore, we couldn’t continue to
rely upon it to adequately predict if any changes would
endanger the team hitting the required schedule.

5.1 Reluctance
The lack of a clear plan that truly reflected the stories of

work that needed to be completed made us feel rather
uncomfortable. Although we didn’t like moving forward
with development without an adequate release plan, our
fears were tempered by the desire of the team to start

writing code. The thought of taking several days to wade
through cards and get high level estimates was met with a
large amount of resistance from the entire team. As
previously mentioned, we felt that it was in the best interest
of the team to actually get some real experience delivering
some software. At the same time, we kept looking for
opportunities to fill in a release plan.

5.2 A Simple Strategy
The breakthrough for simplified release planning

occurred almost half way into the first milestone of the
project (after about 6 iterations). During an iteration
planning meeting, the planning had gone quickly but we
were still a bit uneasy about the breadth of the project that
was unfolding (a smell that a release plan was missing). As
we had a little more time available in the meeting room, we
suggested that our customers read out some of the higher
level stories that remained. We felt that this would give us
an idea about what they intended to get done for the first
official release of the product.

As an experiment, one of the authors began to write on a
card, “gut feel” estimates for the amount of time required to
finish those high level items. After a few minutes he
realised that this was a useful technique for everyone to try
and so he gave all the developers a card and asked them to
try the following:

• On a card write down a high level estimate for
each story card

• Keep your estimate to yourself

• Try and keep conversation to a minimum,
limiting it to clarification of story details or
technical questions

We then proceeded to record an estimate for each
requirement that was described. Sometimes we needed a bit
more detail from the user, like “how many reports would
need to be produced” or “what kind of response time was
required”. Occasionally someone would ask a technical
question like “does the current database technology provide
support for offline replication”. Often some of the questions
that were asked caused people to go back and scribble out
an estimate and increase it, or sometimes even decrease it.
In cases where conversation was dwelling on a decision
about a particular implementations we just asked everyone
to make their estimate reflect their uncertainty. After about
an hour we had covered all of the stories. The results
looked similar to the cards shown in Figure 15, although
these cards are a later example of the technique where we
asked developers to give high and low estimates.

Figure 15 - Release Planning Estimates

Once we had completed estimates for each of the stories,
we then went around the room and asked each developer to
read out their estimate for each high level story, which we
recorded on a flip chart. This proved to be quite
entertaining as we quickly saw who was optimistic in the
team and who had more knowledge of a particular area. We
then simply averaged the estimates to get a total for the
estimated time remaining.

This grand total was then divided by the development
velocity (that we had been measuring in our iterations) to
get an indication of how many weeks would be required to
complete the first release. We also did the division with our
“optimistic” velocity to get a best and worst case scenario.
The good news was that our expected completion date fell
roughly between our best and worst case estimates and so
we felt that at least the first release was attainable.

When we left the planning room, there was a sense of
relief from the entire team, as the project now felt like it
was achievable. Furthermore, the feeling that release
planning was going to be a monster, had now been
dispelled.

5.3 Refinements
We have now repeated this process of release planning

on several releases and with several teams, and have been
happy with the outcome.

Time and time again we have to remind ourselves that
planning is not an exact science – we are making
judgements based on people’s estimates, and while
estimates can be fairly accurate, when you add them
together they do not give you an exact answer. However,
we have been pleased to find that overall our results have
been accurate enough to properly meet our deadlines.

We have also noticed that in these release planning
sessions, developers can get concerned about details that
ultimately don’t appear to affect the outcome of their
estimates. For this reason we introduced high-low estimate
boundaries more as a way to help make estimation more
efficient so that they could express “either/or” decisions.
For example in Figure 15, you can see ranges of 3 to 5
weeks in some cases.

Finally, we have also used this technique further up the
project chain in the organisation. During the “Select” or
“Define” phases we can quickly give high level estimates
for different project options that can be used when making
business cases for potential projects. Not only does this
help the strategy teams put meaningful estimates on the
projects for governance board selection, it also allows the
development teams to feel more involved in the potential
projects that might come through the pipeline for eventual
development.

6. The Role of an Iteration Manager
Since the premise of this paper is enabling Project

Managers to spend more time on the more important
aspects of their job, a brief description of the Iteration
Manager role is useful.

The Iteration Manager is a role to which the Project
Manager can delegate most of the inward facing team
responsibilities. You can think of these roles as two sides
of the same coin, one facing outward (Project Manager) and
one facing inward (Iteration Manager). This means that the
Iteration Manager becomes the team tracker [2],
communication enabler, and potentially overall team leader.

Therefore, the Iteration Manager should have many of
the same skills you would look for in a Project Manager,
such as leadership, understanding of team dynamics and
motivation, as well as the ability to make the tough
decisions. However, Iteration Managers can also add
additional value to the team rather than just being an
additional Project Manager. For instance, the Iteration
Managers on our project have been from developer
backgrounds, and in fact, they spent most of their time as
developers on the project in addition to their responsibilities
of Iteration Management. This was beneficial for several
reasons: it freed up the Project Manager for more important
duties, being an active member of the team gave them the
understanding of the technical and business aspects
necessary to perform the job, and it didn’t add any
additional levels of pure management that can often slow
down a project.

7. Conclusion
We all know that Project Managers often need to divert

their attention from the more important aspects of their
work to focus on the useful but more mundane tracking
tasks. We’ve presented a strategy for allowing managers to
once again spend the necessary time on building and
maintaining customer and business management
relationships that ensure project success. The main idea is
to keep tracking simple by figuring out exactly what
information is necessary for all interested parties and only
focusing on these items. Additionally, splitting out the
inward facing responsibilities to another team member can
free up more time.

If we had it to do over again, we would create the high
level release plan even if there were some unknowns. This
is especially true since we know they are not time
consuming to perform, therefore any changes can be
accommodated quickly. What is important is to establish a
pattern of successful iterations, which show progress
towards completion. As the project progresses, it is also
important to be conscious of the team’s velocity, keeping in
mind the realities of “yesterday’s weather” and the pit-falls
of optimistically selecting an expected velocity. Lastly,
progress tracking should give a simple overview without
being too precise with its predictions. Simple graphs that
show story completion are very effective.

8. Acknowledgements
We would like to thank the reviewers and the following

colleagues for their contributions to this paper: members of
the My Supply team (in particular Brent Cryder), Rebecca
Parsons, Andy Pols, Laura Waite, The Bishop of Norwich
and finally the Golden-T.

9. References

[1] Microsoft online at http://www.microsoft.com/net/basics/, last
visited June 2004

[2]Beck, K. Extreme programming explained: embrace change.
Reading Mass. Addison-Wesley, 1999

[3] Various authors online at
http://www.c2.com/cgi/wiki?VelocityVsLoadFactor, last visited
June 2004

[4] Kerth N. Project Retrospectives: A Handbook for Team
Reviews, Dorset-House, 2001

[5] Control Chaos online at
http://www.controlchaos.com/burndown.htm

[6] Fowler M, Refactoring: Improving the Design of Existing
Code, Reading Mass. Addison-Wesley, 1999

